Coovally简介
Contents
Coovally简介#
Coovally功能#
Coovally是一个包含完整AI建模流程、AI项目管理及AI系统部署管理的机器学习平台,可提供数据预处理、智能标注、分布式模型训练、多维度模型评估、一键式模型部署服务。
Coovally加快了AI视觉解决方案的开发、集成、测试和验证,帮助提升企业的AI技术栈和智能软件开发能力,帮助用户快速批量验证多种机器学习和深度学习模型的性能,极大的降低AI模型工程化应用门槛。
Coovally功能如下:
总览Coovally产品类目、数据总览、任务总览、最近项目、应用方案库、系统通知消息以及系统设置等。
对图像、视频等待标注数据进行归类、整理、编辑、纠错和标注等操作,生成用于模型训练的数据集。Coovally 系统中辅助标注支持普通标注、大模型智能辅助标注以及模型预标注三种标注方式。
通过本地上传或从辅助标注模块中发布两种方式创建数据集。
管理Coovally中的数据集,用户可创建、预览、删除、分享数据集以及标签的预览和转换。
模型训练包括数据预处理、模型训练、超参数优化、模型评估等步骤。Coovally支持系统算法和自定义算法两种建模方式。
将Coovally训练得到的模型转换成TensorRT或ONNX等格式,实现服务端或者边端的推理加速。
将转换后的模型部署到推理引擎中,并以SDK或REST的方式对外提供服务。
图像处理的“瑞士军刀”,提供了图像增强、转换以及生成等轻巧的图像处理工具。
提供浏览器插件,方便用户快速进行模型训练。
Coovally内置模型#
Coovally内置了丰富的机器学习和深度学习模型,机器学习模型列表和深度学习模型列表分别展示了当前系统中已经内置的部分模型。
机器学习模型列表#
预处理算法 |
特征抽取算法 |
分类算法 |
回归算法 |
---|---|---|---|
FastICA |
VarianceThreshold |
LinearSVC |
AdaBoostRegressor |
FeatureAgglomeration |
SelectFromModel |
NearestCentroid |
RANSACRegressor |
StandardScaler |
RFE |
AdaBoostClassifier |
BaggingRegressor |
ZeroCount |
SelectPercentile |
GaussianNB |
LassoCV |
Normalizer |
SelectFwe |
BernoulliNB |
DecisionTreeRegressor |
MaxAbsScaler |
Perceptron |
LinearSVR |
|
Nystroem |
LogisticRegression |
ExtraTreesRegressor |
|
RobustScaler |
LGBMClassifier |
ElasticNetCV |
|
PolynomialFeatures |
BaggingClassifier |
TweedieRegressor |
|
PCA |
DecisionTreeClassifier |
SGDRegressor |
|
RBFSampler |
RandomForestClassifier |
GradientBoostingRegressor |
|
Binarizer |
GradientBoostingClassifier |
XGBRegressor |
|
MinMaxScaler |
KNeighborsClassifier |
HuberRegressor |
|
OneHotEncoder |
SGDClassifier |
RidgeCV |
|
MultinomialNB |
KernelRidge |
||
XGBClassifier |
LassoLarsCV |
||
MLPClassifier |
RandomForestRegressor |
||
ExtraTreesClassifier |
PLSRegression |
||
KNeighborsRegressor |
|||
LGBMRegressor |
|||
BayesianRidge |
深度学习模型列表#
图像分类 |
目标检测 |
实例分割 |
语义分割 |
旋转目标检测 |
---|---|---|---|---|
ResNet18 |
FasterRCNN |
MaskRCNN |
PSPNet |
RotateFCOS |
ResNet34 |
Retinanet |
CascadeMaskRCNN |
FCN |
RotateRetinaNet |
ResNet50 |
SSD |
Mask ScoringRCNN |
RotatedFasterR-CNN |
|
ResNet101 |
SSDLite |
SOLO |
OrientedR-CNN |
|
ResNet152 |
CascadeRCNN |
SCNet |
GlidingVertex |
|
ShuffleNet V1 |
FCOS |
PointRend |
OrientedRepPoints |
|
ShuffleNet V2 |
YoloV3 |
Mask ScoringRCNN |
RoITrans |
|
MobileNet V2 |
YoloV3_Mobile |
Hybrid TaskCascade |
RotatedPoints |
|
MobileNetV3-Small |
FSAF |
YOLACT |
RotatedATSS |
|
MobileNetV3-Large |
Cornernet |
InstaBoost |
R3Det |
|
Res2Net50 |
Centernet |
DetectoRS |
CFA |
|
Res2Net101 |
DETR |
QueryInst |
SASM |
|
VGG11 |
YOLOX |
S2ANet |
||
VGG13 |
VarifocalNet |
|||
VGG16 |
SparseRCNN |
|||
VGG19 |
GridRCNN |
|||
VGG11-BN |
Mask R-CNN |
|||
VGG13-BN |
LibraRCNN |
|||
VGG16-BN |
Guided Anchoring |
|||
VGG19-BN |
TridentNet |
|||
ResNeXt50 |
RepPoints |
|||
ResNeXt101 |
FreeAnchor |
|||
ResNeXt152 |
Cascade RPN |
|||
SE-ResNet50 |
Deformable Detr |
|||
SE-ResNet101 |
FoveaBox |
|||
Swin-T |
PAA |
|||
Swin-S |
Double Heads RCNN |
|||
Swin-B |
Dynamic RCNN |
|||
Swin-L |
ATSS |
|||
ViT-B16 |
NAS FCOS |
|||
ViT-B32 |
Auto Assign |
|||
ViT-L16 |
Side-Aware BoundaryLocalization |
|||
TNT |
YoloV5 Nano |
|||
Mlp-Mixer-B16 |
YoloV5 Small |
|||
Mlp-Mixer-L16 |
YoloV5 Middle |
|||
DeiT-tiny |
YoloV5 Large |
|||
DeiT-small |
YoloV5 X-Large |
|||
DeiT-base |
MMYoloV5 V61 Nano |
|||
Conformer-tiny-p16 |
MMYoloV5 V61 Small |
|||
Conformer-small-p32 |
MMYoloV5 V61 Middle |
|||
Conformer-small-p16 |
MMYoloV5 V61 Large |
|||
Conformer-base-p16 |
MMYoloV5 V62 Nano |
|||
T2T-ViT_t-14 |
MMYoloV5 V62 Small |
|||
T2T-ViT_t-19 |
MMYoloV5 V62 Middle |
|||
T2T-ViT_t-24 |
MMYoloV5 V62 Large |
|||
PCPVT-small |
MMYoloV6 Nano |
|||
PCPVT-base |
MMYoloV6 Tiny |
|||
PCPVT-large |
MMYoloV6 Small |
|||
SVT-small |
MMYoloV6 Middle |
|||
SVT-base |
MMYoloV6 Large |
|||
SVT-large |
MMYoloV7 Tiny |
|||
ConvNeXt-T |
MMYoloV7 Large |
|||
ConvNeXt-S |
MMYoloV7 X |
|||
ConvNeXt-B |
MMYoloV8 Nano |
|||
ConvNeXt-L |
MMYoloV8 Small |
|||
ConvNeXt-XL |
MMYoloV8 Middle |
|||
HRNet-W18 |
||||
HRNet-W30 |
||||
HRNet-W32 |
||||
HRNet-W40 |
||||
HRNet-W44 |
||||
HRNet-W48 |
||||
HRNet-W64 |
||||
HRNet-W18(ssld) |
||||
HRNet-W48(ssld) |